СТРАТЕГИИ РАЗВЯЗКИ ДЛЯ PCB
Хорошие способы развязки
позволяют сократить количество развязывающих конденсаторов.
Главным является правильный выбор конденсаторов и грамотная
разводка.
1. ТОКИ ПЕРЕКЛЮЧЕНИЯ ЛОГИЧЕСКИХ КОМПОНЕНТОВ |
||||||||||||||||||||||||||||
Не секрет, что при смене логических состояний у большинства цифровых устройств возникает большой бросок тока, который следует сразу за фронтом тактового сигнала (рис. 1). ![]() Например, схеме, работающей на частоте 100 МГц и потребляющей в среднем около 4 А, реально может потребоваться 20 А тока в течение первых нескольких наносекунд тактовой последовательности. (Причина возникновения больших токов при смене логических состояний рассмотрена в статье Б. Картера "Техника разводки печатных плат" - прим. переводчика.) |
Очевидно, что питание этой схемы от 20-амперного источника увеличит размеры и стоимость изделия. Менее очевидно, что паразитные последовательные индуктивности соединительных проводов, проводников печатной платы и выводов компонентов могут сделать невозможным быструю ответную реакцию мощного источника питания на мгновенные изменения тока. С другой стороны, недостаточная нагрузочная способность источника будет приводить к возникновению нестабильных падений напряжений на шинах питания и земли. Это явление обычно проявляется как высокочастотный шум. |
|||||||||||||||||||||||||||
2. ПРИМЕНЕНИЕ КОНДЕНСАТОРОВ |
||||||||||||||||||||||||||||
Применение развязывающих конденсаторов позволяет распределить рабочий ток между потребителями, используя низкоимпедансные (т.е. низкоиндуктивные для токов ВЧ) пути прохождения тока. Практически это означает, что развязывающие конденсаторы непосредственно обслуживают цифровые компоненты, в то время как источник питания занимается их перезарядом. Ключом к созданию работоспособной и удачной схемы развязки является правильный выбор применяемых конденсаторов и правильная разводка цепей их подключения. Использование конденсаторов в качестве элементов развязки требует понимания основ их работы. На рисунке 2а показан идеальный конденсатор - емкость для накопления и хранения заряда и для освобождения от него. На рисунке 3 приведена частотная зависимость импеданса идеального конденсатора - монотонное уменьшение значения при увеличении частоты. Поскольку основной шум цифровых систем является высокочастотным шумом (>50 МГц), уменьшение импеданса на высоких частотах хорошо соответствует задаче развязки цепей питания. ![]() К сожалению, поведение реального конденсатора не такое простое; его модель показана на рисунке 2б. Физическое устройство реального конденсатора включает в себя эквивалентное последовательное сопротивление (ESR) и эквивалентную последовательную индуктивность (ESL). К тому же, реальный конденсатор обладает сопротивлением утечки. Сумма этих паразитных эффектов приводит к изменению характера частотной зависимости импеданса (рис. 3). ![]() Низшая точка импедансной зависимости известна как частота собственного резонанса. Разработчики часто пытаются подобрать конденсаторы с собственной резонансной частотой, находящейся близко от рабочей частоты системы. Однако, параметры реальных конденсаторов делают этот подбор нецелесообразным при тактовой частоте, превышающей 100 МГц. Важное правило, которое следует помнить: развязывающие конденсаторы допустимо использовать на частотах более низких, чем частота их собственного резонанса, до тех пор, пока их импеданс на этих частотах остается достаточно низким. |
Падение напряжения на эквивалентном последовательном сопротивлении конденсатора пропорционально протекающему через него току. Поскольку важным является поддержание питающего напряжения стабильным, желательным является использование в цепях развязки конденсаторов с малым ESR (т.е. с меньшим, чем 200 мОм). Эквивалентная последовательная индуктивность определяет скорость реагирования конденсатора на изменения тока - конденсаторы с более низким значением ESL будут реагировать более быстро на изменения протекающего тока, что очень важно для цепей высокочастотной развязки. Несмотря на то, что, как параметр, ESR более широко описан и изучен, ESL, наверное, более важен. Все конденсаторы для поверхностного монтажа, приведенные в таблице 1, обладают достаточно низкими значениями ESL.
Конденсаторы с материалом I типа в качестве диэлектрика не ухудшают свои характеристики от времени и воздействия температуры, но малое значение диэлектрической постоянной делает их использование в качестве компонентов развязки неэффективным. Конденсаторы с материалом II типа (т.е. X7R) являются более лучшим выбором из-за хорошей долговременной стабильности (10% потерь в течение 10 лет), температурных характеристик и высокого значения диэлектрической постоянной. Материал III типа обладает наивысшим значением диэлектрической постоянной и плохими температурными показателями (от 50 до 75% потерь при работе на предельных температурах) и плохой долговременной стабильностью (20% потерь в течение 10 лет). Среди популярных диэлектриков многослойная керамика и синтетика обладают небольшими эквивалентными последовательными индуктивностью и сопротивлением. Керамические конденсаторы более легко доставаемы. Танталовые конденсаторы часто используются как общие элементы развязки по низкой частоте, однако они не подходят для локальной развязки. В таблице 1 показаны типичные значения ESL для различных типов корпусов конденсаторов. Типоразмер является определяющим элементом эквивалентной последовательной индуктивности - обычно конденсатор меньшего размера обладает меньшим значением ESL при таком же значении емкости. Конденсаторы с большими значениями ESL не годятся для использования в качестве элементов развязки. В общем случае, правильной стратегией является поиск конденсатора с наибольшей емкостью при наименьших габаритных размерах (это верно лишь с точки зрения ESL, но не всегда правильно с точки зрения другого важнейшего параметра конденсаторов - диэлектрической абсорбции - прим. переводчика). Однако при таком выборе необходимо быть внимательным. Высота корпуса конденсатора в достаточно значительной мере оказывает влияние на ESL. Для перекрывающихся диапазонов ESL в таблице 1 возможен выбор корпуса с меньшим посадочным местом на печатной плате. Однако значение ESL может оказаться большим. Поэтому при выборе типа конденсатора необходимо руководствоваться параметрами производителя для определения лучшего компромиссного варианта. |
|||||||||||||||||||||||||||
3. ИНДУКТИВНОСТЬ ПРОВОДНИКА |
||||||||||||||||||||||||||||
При разводке компонентов и цепей основным препятствием хорошей развязки является индуктивность. С весьма грубыми приближениями можно считать, что индуктивность трассы с волновым сопротивлением 50 Ом на материале FR-4 будет составлять около 9 пГн на каждые 0,025 мм длины. Индуктивность одиночного переходного отверстия примерно равняется 500 пГн и зависит от геометрической конфигурации. Индуктивность пропорциональна длине, поэтому важно минимизировать длину проводника между выводами компонента и развязывающего конденсатора. Индуктивность обратно пропорциональна ширине трассы, поэтому широкие проводники более предпочтительны, чем узкие. |
Помните, что путь тока всегда представляет собой петлю, и эта петля должна быть минимизирована. Уменьшение расстояния между выводом питания компонента и выводом конденсатора может и не уменьшить общую индуктивность. Как правильно расположить конденсатор? Ближе к выводу питания компонента? Или ближе к выводу земли? Или посередине между этими выводами? Некоторые источники рекомендуют располагать конденсатор вблизи от вывода, наиболее удаленного от полигона питания или земли. |
|||||||||||||||||||||||||||
4. ВАРИАНТЫ РАЗВОДКИ КОНДЕНСАТОРОВ РАЗВЯЗКИ |
||||||||||||||||||||||||||||
Хорошая разводка чрезвычайно важна для эффективной работы цепей развязки. Как видно из таблицы 1, конденсаторы со значением эффективной последовательной индуктивности менее 1 нГн вполне доступны. Добавление всего лишь 2 нГн утроит значение ESL конденсатора. Рисунок 4 демонстрирует изменение частоты собственного резонанса и увеличение интегрального реактивного сопротивления при добавлении индуктивности проводника в 2 нГн к собственной индуктивности (0,8 нГн) конденсатора емкостью 4,7 нФ. ![]() На рисунке 5 показано несколько методов размещения и подключения конденсатора развязки. Для упрощения на схемах показаны лишь выводы конденсатора и вывод питания активного компонента. Соединению между выводом конденсатора и общим выводом питания компонента также должно быть уделено значительное внимание. На рисунке 5A показана наиболее часто встречающаяся конфигурация разводки. Вывод питания компонента подключен коротким проводником к шине питания во внутреннем слое через переходное отверстие. Конденсатор развязки, расположенный на другой стороне платы, подключен к этому же переходному отверстию. Несмотря на то, что такой подход часто обусловливается простотой разводки, он позволяет эффективно работать цепям развязки и экономит пространство разводки. Два одиночных отверстия добавят в цепь развязки около 1 нГн паразитной индуктивности. Если конденсатор расположен на расстоянии 50 мил (1,27 мм) от вывода компонента, то добавляемая индуктивность в лучшем случае составит около 0,9 нГн. При более удаленном размещении конденсатора от активного компонента проводники будут более длинными, а паразитная индуктиность будет иметь большее значение. |
![]() Вариант B представляет собой значительное улучшение варианта A с размещением конденсатора развязки и активного компонента на одной стороне печатной платы. Конденсатор подключен после паразитной индуктивности переходного отверстия. При достаточно коротких проводниках схема развязки вносит дополнительно менее 1 нГн паразитной индуктивности. Вариант D представляет собой развитие варианта A - для уменьшения собственной индуктивности и увеличения распределенной емкости проводники сделаны шире, что также улучшает характеристики цепи развязки. Вариант E - модификация варианта B с более широкими проводниками и более хорошими характеристиками. На первый взгляд кажется, что вариант C совершенно не подходит для разводки цепей развязки, поскольку нет проводников, напрямую подключающих активный компонент к конденсатору развязки; фактически они оба подключены через отверстия к полигонам питания и земли, которые расположены во внутренних слоях. При четырех отверстиях к цепям развязки добавится минимум 2 нГн паразитной индуктивности. Однако, очень широкие проводники питания и земли практически не будут добавлять индуктивности при не очень большой длине. Такой вариант разводки пригоден, когда конденсатор развязки не может быть размещен достаточно близко к активному компоненту. Вариант F - улучшение варианта C добавлением дополнительных параллельных отверстий. Такое добавление приводит к уменьшению паразитной индуктивности переходных отверстий в два раза, позволяет улучшить качественные характеристики схемы и должно использоваться всякий раз, когда позволяет место. |
|||||||||||||||||||||||||||
5. ПРИМЕНЕНИЕ СОСТАВНЫХ КОНДЕНСАТОРОВ |
||||||||||||||||||||||||||||
Поскольку емкости при параллельном соединении суммируются, а результирующая индуктивность уменьшается, то параллельное соединение двух небольших конденсаторов с одинаковыми значениями емкости может привести к качественному выигрышу, по сравнению с применением одного большого конденсатора. Конечным результатом будет такая же емкость развязки и меньшая паразитная эквивалентная последовательная индуктивность. На практике обычно избегают использования конденсаторов с разными значениями емкостей для создания локальной развязки. Составные конденсаторы с разными емкостями обладают частотной зависимостью импеданса, складывающейся из частотных зависимостей импедансов отдельных конденсаторов. Пример показан на рисунке 6. ![]() Конденсатор емкостью 47 нФ используется для развязки низких частот, а конденсатор емкостью 150 пФ - для высоких. На первый взгляд, можно предположить, что параллельное соединение этих конденсаторов позволит улучшить импедансную характеристику. |
К сожалению, это не так. Такое соединение может породить существенные проблемы на частотах, находящихся между собственными резонансными частотами конденсаторов. На рисунке 7 видно, что комбинация двух конденсаторов создает антирезонансный пик (а, следовательно, повышенное сопротивление) на суммарной частотной характеристике. ![]() Источник данной проблемы легко определяется при рассмотрении эквивалентной схемы, показанной на рисунке 8. Результатом соединения паразитных компонентов конденсаторов является классический резонансный контур. ![]() Тем не менее, составные конденсаторы, используемые в качестве элементов развязки, достаточно широко используются в прецизионных схемах. В этом случае, к выбору конденсаторов необходимо подходить с большой тщательностью, моделируя схемы, включающие все паразитные компоненты. |
Примечание автора перевода | |
Рекомендации по разводке конденсаторов развязки, приведенные в статье Дж. Томпсон "Стратегии развязки для PCB", успешно применяются при разработке прецизионных ПЗС камер в ЗАО "НПП Силар". |