ЕМКОСТЬ И КОНДЕНСАТОРЫ |
|
Паразитные эффекты в конденсаторах |
|
Часто перед разработчиком электронной схемы встает вопрос выбора правильных типов конденсаторов. Для частных приложений ответ на него не представляет особых трудностей. В общем, можно обнаружить, что большинство конденсаторов примененяются в четырех категориях: |
- развязка по переменному току, - фильтрация цепей постоянного тока, - активные или пассивные RC-фильтры и частотно-избирательные цепи, - аналоговые интеграторы и цепи выборки-хранения. |
Несмотря на то, что существует более дюжины популярных типов конденсаторов (пленочных, керамических, электролитических и т.д.), только один или два типа из них наилучшим образом подойдут для какого-то конкретного применения. В основном, это связано с явно выраженным несовершенством или паразитными эффектами, влияющими на характеристики устройства в целом. В противоположность идеальному реальный конденсатор описывается паразитными компонентами, определяющими его поведение помимо главного параметра - его емкости, - резистивными и индуктивными элементами, нелинейностью и диэлектрической памятью. Результирующие характеристики, определяющиеся ими, как правило, специфицируются производителями. Понимание влияния паразитных компонентов поможет сделать правильный выбор типа конденсатора для каждого конкретного приложения. |
Различают четыре паразитных элемента, влияющих на характеристики конденсаторов: утечка или параллельное сопротивление, эквивалентное последовательное сопротивление (equivalent series resistance, ESR), эквивалентная последовательная индуктивность (equivalent series inductance, ESL) и диэлектрическая абсорбция (память). |
В идеальном конденсаторе заряд Q изменяется только в ответ на протекание внешнего тока. В реальном же, сопротивление утечки разряжает конденсатор со скоростью, определяющейся постоянной времени RPС. Утечка конденсатора RP или RL - важный параметр при использовании конденсаторов в качестве элементов развязки по переменному току, в схемах выборки-хранения и в схемах интеграторов, т.е. в высокоимпедансных схемах. |
Электролитические конденсаторы (танталовые и алюминиевые), известные своей большой емкостью, обладают очень большим током утечки (обычно около 5...20 нА/мкФ) из-за плохого сопротивления изоляции и не подходят для схем хранения и развязки. Наилучшим выбором для развязки цепей по переменному току и схем хранения заряда являются тефлоновые (фторопластовые, политетрафлуорэтиле-новые) и другие "поли"-типы (полипропиленовые, полистироловые и т.п.). |
Эквивалентное последовательное сопротивление (ESR) RS - суммарное сопротивление выводов конденсатора и его обкладок, включенное последовательно с основной емкостью. Это сопротивление приводит к рассеиванию мощности (и, следовательно, к потерям) при протекании большого переменного тока, что может иметь серьезные последствия на высоких частотах и при протекании больших импульсных токов. |
Этот паразитный компонент реального конденсатора, однако, не вносит существенных ограничений в работу прецизионных высокоимпедансных и малосигнальных аналоговых схем. Конденсаторы пленочного типа и со слюдяным диэлектриком обладают наименьшими значениями эквивалентного последовательного сопротивления. |
Эквивалентная последовательная индуктивность (ESL) LS - индуктивность выводов конденсатора и его обкладок, включенная последовательно с основной емкостью. Как и ESR, ESL может создать серьезные проблемы на высоких частотах, и даже в том случае, когда прецизионная схема работает на постоянном токе или на низкой частоте. Причина кроется в том, что транзисторы, используемые в прецизионных аналоговых схемах, могут быть высокочастотными и могут усиливать резонансные явления, связанные с низкими значениями паразитной индуктивности. Более подходящим типом для высокочастотных развязок могут служить монолитные керамические конденсаторы, обладающие малой эквивалентной последовательной индуктивностью. Они представляют собой многослойную структуру металлических пленок и керамичекого диэлектрика. Пленки, представляющие собой обкладки, параллельно соединяются соответствующим образом, что более предпочтительно, чем последовательное соединение. |
Электролитические, бумажные и подобные им конденсаторы являются плохим выбором для цепей развязки на высоких частотах. По существу, они представляют собой две скрученные ленты металлической фольги, разделенные диэлектриком. Данный тип конструкции обладает значительной собственной индуктивностью и ведет себя в большей степени как индуктивность, нежели как конденсатор на частотах, превышающих несколько мегагерц. Небольшим недостатком монолитных керамических конденсаторов является микрофонный эффект (т.е. чувствительность к вибрациям). При этом может возникнуть собственный резонанс из-за высокой добротности Q, являющейся следствием малого последовательного сопротивления и малой последовательной индуктивности. |
Поскольку сопротивление утечки, эквивалентное последовательное сопротивление и эквивалентную последовательную индуктивность почти всегда трудно специфицировать раздельно, многие производители объединяют эти параметры в один, известный как тангенс угла диэлектрических потерь (dissipation factor, DF), который, по существу, описывает неэффективность конденсатора. Этот параметр определяется отношением рассеянной энергии к запасенной в течение одного цикла. На практике, он равен коэффициенту мощности для диэлектрика. Если рассеяние на высоких частотах в основном определяется последовательным сопротивле-нием, отношение ESR к общему рективному сопротивлению дает достаточно точный результат. |
Тангенс угла диэлектрических потерь оказывается эквивалентным также обратной величине добротности конденсатора Q, которая иногда специфицируется производителями. |
Монолитные керамические конденсаторы являются прекрасными компонентами высокочастотных развязок, но они обладают значительным коэффициентом диэлектрической абсорбции (dielectric absorption, RDA, CDA), которая ограничивает их применение в качестве элементов фиксации в усилителях выборки-хранения (SHA). Эффект диэлектрической абсорбции ведет себя подобно гистерезису внутреннего заряда, что проявляется при быстром разряде конденсатора и затем, при отсоединенном выводе, восстановлении части заряда. Поскольку количество восстановленного заряда является функцией начального заряда, то этот процесс, на самом деле, является зарядовой памятью и может приводить к ошибкам в тех случаях, когда такой конденсатор используется в схемах выборки-хранения. |
Для таких применений рекомендуется использовать фторопластовые, полипропиленовые и полистироловые конденсаторы, коэффициент диэлектрической абсорбции которых очень мал (обычно <0.01%). Общие сравнительные характеристики конденсаторов приведены в статье "Сравнительная таблица различных типов конденсаторов". |
Следующее замечание касается, общих чертах, высокочастотных развязок. Наилучшим способом обеспечения адекватной развязки как на высоких, так и на низких частотах является совместное параллельное включение электролитического (лучше танталового) и монолитного керамического конденсаторов. Такая комбинация обладает большой емкостью во всем частотном диапазоне. Совсем необязательно размещать танталовый конденсатор у каждой микросхемы, за исключением критичных случаев. Достаточно иметь один танталовый конденсатор на несколько микросхем, если они расположены недалеко друг от друга. |
Для корректной высокочастотной развязки необходимо правильное размещение конденсатора. Даже короткие проводники имеют значительную индуктивность, поэтому конденсатор должен располагаться в непосредственной близости к микросхемой, а сам проводник, соединяющий выводы конденсатора и микросхемы, должен быть коротким и относительно широким. В идеальном случае, конденсатор высокочастотной развязки должен быть с планарными выводами, но возможно использование и обычных конденсаторов с длиной выводов не более 1,5 мм. |
Паразитная емкость |
|
Как и конденсатор с двумя параллельными обкладками, паразитная емкость создается там, где два проводника проходят близко друг от друга (особенно, если они параллельны) и не закорочены или экранированы проводником, выполняющим роль экрана Фарадея. |
|
Паразитная емкость, как правило, возникает между параллельными проводниками печатной платы или между проводниками/полигонами, расположенными на разных слоях платы. Появление и эффекты паразитной емкости (особенно, на высоких частотах), к сожалению, часто игнорируются в процессе моделирования и могут приводить к серьезным проблемам в уже готовом изделии. К таким эффектам относятся повышенный шум или помехи, сужение частотной характеристики, и, даже, нестабильность. Например, если в формулу расчета емкости подставить параметры печатной платы (ER = 4.7, d = 1.5 мм), то удельная емкость между двумя проводниками, расположенными на разных сторонах платы, составит около 3 пФ/см2. На частоте 250 МГц емкость в 3 пФ даст реакивное сопротивление 212,2 Ом! Полностью устранить паразитную емкость невозможно. Все, что можно сделать, - это минимизировать ее воздействие на работу схемы. Если нет возможностей влиять на источник помех VN или на местоположение нагрузки Z1, или такая возможность мала, то экран Фарадея позволит уменьшить наводимый шум. Экран представляет собой заземленный проводник, расположенный между источником помехи и схемой. На эквивалентной схеме показано, как источник высокочастотных помех VN взаимодействует на импеданс схемы Z1 через паразитную емкость C. |
Как показано ниже, экран Фарадея преграждает путь линиям электрического поля. При этом возвратный ток помехи возвращается к своему источнику минуя Z1. |
Другой пример емкостной связи проявляется в керамических корпусах интегральных схем, на верхней стороне которых располагается небольшая прямоугольная металлическая (коваровая) пластинка, соединяющаяся с метализированным ободком. Производители часто соединяют этот ободок с одним из угловых выводов корпуса или оставляют неподсоединенным. В большинстве логических схем этот угловой вывод является общим выводом питания и заземляется. В аналоговых же микросхемах ободок остается неподсоединенным, и такие схемы более восприимчивы к внешним наводкам, чем их аналоги в пластмассовых корпусах. |
Какой бы ни был уровень внешнего шума, хорошим делом является заземлять металлическую пластинку корпуса, если таковое не было сделано производителем. Это может быть сделано подпайкой провода к самой пластинке или к металлизированному ободку. Сама микросхема от этого действия не пострадает, поскольку кристалл термически и электрически изолирован от них. Если подпайка проводника к корпусу недопустима, то можно использовать либо механический контакт с землей через скобу, либо контакт через токопроводящий клей или краску к общему выводу микросхемы. Однако, не следует заземлять металлическую пластинку, не убедившись, что она не подсоединена к выводу напряжения питания. |
Существует один случай, когда применение экрана Фарадея бесполезно. Значение паразитной емкости между двумя выводами корпуса микросхемы обычно составляет 0,2 пФ (диапазон от 0,05 до 0,6 пФ). Однако, эта емкость образуется внутри корпуса и внешнее экранирование не даст предполагаемого результата. |
|
Рассмотрим многоразрядный преобразователь (АЦП или ЦАП), подключенный к высокоскоростной шине данных. Каждая линия шины данных, переключающаяся со скоростью 2...5 В/нс, может воздействовать на аналоговый порт через паразитную емкость, следствием чего могут ухудшиться качественные характеристики преобразователя. |
Эта проблема может быть устранена изолированием шины данных через тактируемый буфер. Поскольку это решение предполагает использование дополнительного компонента, то потребуется дополнительное место для его размещения на печатной плате, дополнительная мощность источника питания и увеличение стоимости устройства. Несмотря на это, отношение сигнал-шум преобразователя (один из важнейших параметров) может повыситься. |